Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4063, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463918

RESUMO

We investigate how reliable movement can emerge in aggregates of highly error-prone individuals. The individuals-robotic modules-move stochastically using vibration motors. By coupling them via elastic links, soft-bodied aggregates can be created. We present distributed algorithms that enable the aggregates to move and deform reliably. The concept and algorithms are validated through formal analysis of the elastic couplings and experiments with aggregates comprising up to 49 physical modules-among the biggest soft-bodied aggregates to date made of autonomous modules. The experiments show that aggregates with elastic couplings can shrink and stretch their bodies, move with a precision that increases with the number of modules, and outperform aggregates with no, or rigid, couplings. Our findings demonstrate that mechanical couplings can play a vital role in reaching coherent motion among individuals with exceedingly limited and error-prone abilities, and may pave the way for low-power, stretchable robots for high-resolution monitoring and manipulation.


Assuntos
Movimento , Robótica , Humanos , Movimento (Física) , Algoritmos , Vibração
2.
Nat Commun ; 14(1): 3476, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311824

RESUMO

The fascinating collective behaviors of biological systems have inspired extensive studies on shape assembly of robot swarms. Here, we propose a strategy for shape assembly of robot swarms based on the idea of mean-shift exploration: when a robot is surrounded by neighboring robots and unoccupied locations, it would actively give up its current location by exploring the highest density of nearby unoccupied locations in the desired shape. This idea is realized by adapting the mean-shift algorithm, which is an optimization technique widely used in machine learning for locating the maxima of a density function. The proposed strategy empowers robot swarms to assemble highly complex shapes with strong adaptability, as verified by experiments with swarms of 50 ground robots. The comparison between the proposed strategy and the state-of-the-art demonstrates its high efficiency especially for large-scale swarms. The proposed strategy can also be adapted to generate interesting behaviors including shape regeneration, cooperative cargo transportation, and complex environment exploration.

3.
Front Robot AI ; 7: 83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501250

RESUMO

Robot swarms are groups of robots that each act autonomously based on only local perception and coordination with neighboring robots. While current swarm implementations can be large in size (e.g., 1,000 robots), they are typically constrained to working in highly controlled indoor environments. Moreover, a common property of swarms is the underlying assumption that the robots act in close proximity of each other (e.g., 10 body lengths apart), and typically employ uninterrupted, situated, close-range communication for coordination. Many real world applications, including environmental monitoring and precision agriculture, however, require scalable groups of robots to act jointly over large distances (e.g., 1,000 body lengths), rendering the use of dense swarms impractical. Using a dense swarm for such applications would be invasive to the environment and unrealistic in terms of mission deployment, maintenance and post-mission recovery. To address this problem, we propose the sparse swarm concept, and illustrate its use in the context of four application scenarios. For one scenario, which requires a group of rovers to traverse, and monitor, a forest environment, we identify the challenges involved at all levels in developing a sparse swarm-from the hardware platform to communication-constrained coordination algorithms-and discuss potential solutions. We outline open questions of theoretical and practical nature, which we hope will bring the concept of sparse swarms to fruition.

4.
PLoS Comput Biol ; 11(9): e1004283, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26334993

RESUMO

Endotherms such as rats and mice huddle together to keep warm. The huddle is considered to be an example of a self-organising system, because complex properties of the collective group behaviour are thought to emerge spontaneously through simple interactions between individuals. Groups of rodent pups display two such emergent properties. First, huddling undergoes a 'phase transition', such that pups start to aggregate rapidly as the temperature of the environment falls below a critical temperature. Second, the huddle maintains a constant 'pup flow', where cooler pups at the periphery continually displace warmer pups at the centre. We set out to test whether these complex group behaviours can emerge spontaneously from local interactions between individuals. We designed a model using a minimal set of assumptions about how individual pups interact, by simply turning towards heat sources, and show in computer simulations that the model reproduces the first emergent property--the phase transition. However, this minimal model tends to produce an unnatural behaviour where several smaller aggregates emerge rather than one large huddle. We found that an extension of the minimal model to include heat exchange between pups allows the group to maintain one large huddle but eradicates the phase transition, whereas inclusion of an additional homeostatic term recovers the phase transition for large huddles. As an unanticipated consequence, the extended model also naturally gave rise to the second observed emergent property--a continuous pup flow. The model therefore serves as a minimal description of huddling as a self-organising system, and as an existence proof that group-level huddling dynamics emerge spontaneously through simple interactions between individuals. We derive a specific testable prediction: Increasing the capacity of the individual to generate or conserve heat will increase the range of ambient temperatures over which adaptive thermoregulatory huddling will emerge.


Assuntos
Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Modelos Biológicos , Algoritmos , Animais , Biologia Computacional , Camundongos , Ratos , Termodinâmica
5.
J R Soc Interface ; 5(27): 1193-202, 2008 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-18337214

RESUMO

We consider an agent that must choose repeatedly among several actions. Each action has a certain probability of giving the agent an energy reward, and costs may be associated with switching between actions. The agent does not know which action has the highest reward probability, and the probabilities change randomly over time. We study two learning rules that have been widely used to model decision-making processes in animals-one deterministic and the other stochastic. In particular, we examine the influence of the rules' 'learning rate' on the agent's energy gain. We compare the performance of each rule with the best performance attainable when the agent has either full knowledge or no knowledge of the environment. Over relatively short periods of time, both rules are successful in enabling agents to exploit their environment. Moreover, under a range of effective learning rates, both rules are equivalent, and can be expressed by a third rule that requires the agent to select the action for which the current run of unsuccessful trials is shortest. However, the performance of both rules is relatively poor over longer periods of time, and under most circumstances no better than the performance an agent could achieve without knowledge of the environment. We propose a simple extension to the original rules that enables agents to learn about and effectively exploit a changing environment for an unlimited period of time.


Assuntos
Tomada de Decisões , Ecossistema , Aprendizagem , Modelos Biológicos , Animais , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...